Full-core power distributions

Questions and discussion about applications, input, output and general user topics
TimK
Posts: 2
Joined: Thu Jan 22, 2015 5:45 pm
Security question 1: No
Security question 2: 92

Full-core power distributions

Post by TimK » Thu Jan 22, 2015 5:50 pm

Hi there.

I'm a PhD student at CEA and I use SERPENT to do some calculations on SFR assemblies. I use the 2.1.16 beta version.
I used the command "set cpd 1 10 121 221 " to get power profile in the core I'm studying but I have a small issue with the output.
According to the manual, I should have had several .png files but I only got a .m file with the results I want but I don't know how Serpent numbers the assemblies and pins so I can't reconstruct the picture.

Any advice on this topic ?

Keep on the good work anyway and thanks !
Tim

User avatar
Jaakko Leppänen
Site Admin
Posts: 2387
Joined: Thu Mar 18, 2010 10:43 pm
Security question 2: 0
Location: Espoo, Finland
Contact:

Re: Full-core power distributions

Post by Jaakko Leppänen » Thu Jan 22, 2015 7:21 pm

There's an error in the manual. It should be an .m file.

The core and assembly-level indexes simply run from 1 to the number of lattice elements. If you read the file in Matlab and use the reshape-command on the assembly-level distribution, you should get something that looks like the assembly pattern in the reactor.

The pin-level distribution is a bit trickier. The assembly and axial indexes are the same as in the assembly-level distribution, but the pin index refers to the pin position inside the assembly. So you'll need some scripting to get the data into a form that can be plotted.
- Jaakko

TimK
Posts: 2
Joined: Thu Jan 22, 2015 5:45 pm
Security question 1: No
Security question 2: 92

Re: Full-core power distributions

Post by TimK » Fri Jan 23, 2015 10:35 am

Ok, thanks !

I will write something then =)

novako
Posts: 26
Joined: Sun Feb 15, 2015 1:01 pm
Security question 1: No
Security question 2: 92
Location: Prague, Czech Republic

Re: Full-core power distributions

Post by novako » Sun Feb 15, 2015 1:05 pm

Hi,
could you please tell me, what is the meaning of numbers in full core power distribution output.
Example: 49 4.42000E+06 0.00100 18144791 %a
Thanks
Ondrej

User avatar
Jaakko Leppänen
Site Admin
Posts: 2387
Joined: Thu Mar 18, 2010 10:43 pm
Security question 2: 0
Location: Espoo, Finland
Contact:

Re: Full-core power distributions

Post by Jaakko Leppänen » Mon Feb 16, 2015 1:38 pm

Assembly index, power, relative statistical error, number of collisions.
- Jaakko

novako
Posts: 26
Joined: Sun Feb 15, 2015 1:01 pm
Security question 1: No
Security question 2: 92
Location: Prague, Czech Republic

Re: Full-core power distributions

Post by novako » Wed Mar 11, 2015 2:26 pm

Hi,
another question, I tried to produce image from full core power distribution output, but i cannot connect position of assembly to the number of assembly. I attach the picture, which I produce. Problem could be in VVER lattice, that I use.
Thank you
Ondrej
Lattice definition

% --- Lattice (type = 2, pin pitch = 23.6 cm):
lat 15 2 0.0 0.0 19 19 23.6

34 33 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
34 33 34 34 34 34 34 34 34 34 34 3451 3452 3453 3454 3455 34 34 34
34 34 34 34 34 34 34 34 34 353 6 6 6 6 6 6 352 34 34
34 34 34 34 34 34 34 3445 6 6 6 6 6 6 6 6 6 3461 34
34 34 34 34 34 34 3444 6 6 6 6 6 6 6 6 6 6 3462 34
34 34 34 34 34 3443 6 6 6 6 6 6 6 6 6 6 6 3463 34
34 34 34 34 3442 6 6 6 6 6 6 6 6 6 6 6 6 3464 34
34 34 34 3441 6 6 6 6 6 6 6 6 6 6 6 6 6 3465 34
34 34 34 6 6 6 6 6 6 6 6 6 6 6 6 6 6 34 34
34 34 354 6 6 6 6 6 6 6 6 6 6 6 6 6 351 34 34
34 34 6 6 6 6 6 6 6 6 6 6 6 6 6 6 34 34 34
34 3435 6 6 6 6 6 6 6 6 6 6 6 6 6 3410 34 34 34
34 3434 6 6 6 6 6 6 6 6 6 6 6 6 3411 34 34 34 34
34 3433 6 6 6 6 6 6 6 6 6 6 6 3412 34 34 34 34 34
34 3432 6 6 6 6 6 6 6 6 6 6 3413 34 34 34 34 34 34
34 3431 6 6 6 6 6 6 6 6 6 3414 34 34 34 34 34 34 34
34 34 355 6 6 6 6 6 6 356 34 34 34 34 34 34 34 34 34
34 34 34 3425 3424 3423 3422 3421 34 34 34 34 34 34 34 34 34 34 34
34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34


ass = [
49 4.26960E+06 0.00211 17221089 % a
50 6.14779E+06 0.00188 24731522 % a
51 6.85763E+06 0.00169 27576037 % a
52 6.84968E+06 0.00173 27514607 % a
53 6.11836E+06 0.00189 24610678 % a
54 4.26627E+06 0.00217 17201078 % a
66 4.29752E+06 0.00223 17327063 % a
67 8.56084E+06 0.00179 34373670 % a
68 1.25617E+07 0.00147 50407591 % a
69 1.46804E+07 0.00129 58903363 % a
70 1.53416E+07 0.00121 61543196 % a
71 1.46325E+07 0.00130 58751027 % a
72 1.25121E+07 0.00148 50171210 % a
73 8.54422E+06 0.00174 34292556 % a
74 4.26948E+06 0.00217 17218578 % a
84 6.18116E+06 0.00191 24861809 % a
85 1.25885E+07 0.00153 50480992 % a
86 1.75774E+07 0.00117 70508519 % a
87 2.09947E+07 0.00090 84254563 % a
88 2.26523E+07 0.00079 90893911 % a
89 2.26369E+07 0.00079 90841854 % a
90 2.09708E+07 0.00093 84116824 % a
91 1.75638E+07 0.00116 70454220 % a
92 1.25411E+07 0.00150 50294232 % a
93 6.12572E+06 0.00191 24623370 % a
102 6.89076E+06 0.00177 27705603 % a
103 1.47238E+07 0.00131 59066157 % a
104 2.09749E+07 0.00093 84109050 % a
105 2.55148E+07 0.00068 102289490 % a
106 2.82468E+07 0.00062 113318204 % a
107 2.92129E+07 0.00063 117193943 % a
108 2.83748E+07 0.00061 113742673 % a
109 2.55860E+07 0.00069 102585613 % a
110 2.09888E+07 0.00093 84150147 % a
111 1.46744E+07 0.00129 58908169 % a
112 6.87078E+06 0.00175 27621682 % a
120 6.88081E+06 0.00175 27657646 % a
121 1.53793E+07 0.00125 61680653 % a
122 2.26256E+07 0.00080 90741058 % a
123 2.82523E+07 0.00061 113299629 % a
124 3.20359E+07 0.00071 128524641 % a
125 3.39595E+07 0.00083 136198552 % a
126 3.40516E+07 0.00083 136555614 % a
127 3.21545E+07 0.00069 128901665 % a
128 2.83218E+07 0.00060 113553664 % a
129 2.26634E+07 0.00080 90931140 % a
130 1.53535E+07 0.00122 61607587 % a
131 6.86178E+06 0.00174 27573831 % a
138 6.11736E+06 0.00184 24569407 % a
139 1.46738E+07 0.00127 58855630 % a
140 2.26391E+07 0.00078 90825213 % a
141 2.91426E+07 0.00061 116901595 % a
142 3.38852E+07 0.00083 135901164 % a
143 3.68150E+07 0.00104 147594465 % a
144 3.78072E+07 0.00111 151531784 % a
145 3.68920E+07 0.00104 147876526 % a
146 3.40200E+07 0.00083 136465152 % a
147 2.92402E+07 0.00062 117341850 % a
148 2.27080E+07 0.00076 91085321 % a
149 1.46826E+07 0.00128 58841106 % a
150 6.14572E+06 0.00182 24696978 % a
156 4.26397E+06 0.00209 17203175 % a
157 1.24633E+07 0.00144 50008859 % a
158 2.09103E+07 0.00086 83899721 % a
159 2.81812E+07 0.00061 113010450 % a
160 3.38096E+07 0.00084 135556830 % a
161 3.76726E+07 0.00112 151089274 % a
162 3.96250E+07 0.00129 158938309 % a
163 3.96977E+07 0.00128 159135762 % a
164 3.78235E+07 0.00112 151690064 % a
165 3.40574E+07 0.00082 136557080 % a
166 2.83769E+07 0.00058 113804178 % a
167 2.10207E+07 0.00088 84306752 % a
168 1.25228E+07 0.00147 50251687 % a
169 4.29085E+06 0.00206 17300221 % a
175 8.52535E+06 0.00171 34236186 % a
176 1.74940E+07 0.00111 70230097 % a
177 2.55012E+07 0.00064 102303578 % a
178 3.19593E+07 0.00072 128204307 % a
179 3.67110E+07 0.00106 147183354 % a
180 3.96093E+07 0.00128 158822308 % a
181 4.06048E+07 0.00138 162796147 % a
182 3.97086E+07 0.00129 159222687 % a
183 3.69101E+07 0.00103 148023952 % a
184 3.21634E+07 0.00068 128969237 % a
185 2.56349E+07 0.00066 102820827 % a
186 1.75764E+07 0.00113 70483186 % a
187 8.54464E+06 0.00174 34311342 % a
193 4.28100E+06 0.00204 17271941 % a
194 1.25133E+07 0.00143 50177448 % a
195 2.09012E+07 0.00089 83814082 % a
196 2.82373E+07 0.00061 113217293 % a
197 3.38380E+07 0.00083 135637067 % a
198 3.76543E+07 0.00113 150967296 % a
199 3.95908E+07 0.00128 158759877 % a
200 3.96808E+07 0.00130 159096319 % a
201 3.77779E+07 0.00111 151500267 % a
202 3.40774E+07 0.00083 136678504 % a
203 2.83613E+07 0.00061 113745496 % a
204 2.10651E+07 0.00090 84489621 % a
205 1.25458E+07 0.00151 50303255 % a
206 4.27902E+06 0.00215 17270486 % a
212 6.14336E+06 0.00183 24671738 % a
213 1.46534E+07 0.00125 58776719 % a
214 2.25832E+07 0.00077 90583123 % a
215 2.91099E+07 0.00061 116743322 % a
216 3.38823E+07 0.00083 135882730 % a
217 3.66673E+07 0.00104 147014743 % a
218 3.77061E+07 0.00113 151158377 % a
219 3.68490E+07 0.00105 147725749 % a
220 3.40702E+07 0.00082 136573016 % a
221 2.93856E+07 0.00059 117857824 % a
222 2.27736E+07 0.00078 91397704 % a
223 1.47563E+07 0.00131 59161296 % a
224 6.15417E+06 0.00188 24715650 % a
231 6.84873E+06 0.00171 27524566 % a
232 1.52937E+07 0.00120 61382909 % a
233 2.25809E+07 0.00079 90579682 % a
234 2.82286E+07 0.00061 113172750 % a
235 3.19885E+07 0.00072 128260539 % a
236 3.39228E+07 0.00083 136007345 % a
237 3.39254E+07 0.00083 136034701 % a
238 3.20721E+07 0.00071 128579205 % a
239 2.83978E+07 0.00059 113882838 % a
240 2.28380E+07 0.00075 91606127 % a
241 1.54624E+07 0.00121 62036088 % a
242 6.88708E+06 0.00173 27721360 % a
250 6.84822E+06 0.00170 27527842 % a
251 1.46262E+07 0.00128 58680460 % a
252 2.08879E+07 0.00093 83810677 % a
253 2.54906E+07 0.00067 102270770 % a
254 2.82358E+07 0.00062 113209933 % a
255 2.91825E+07 0.00063 116986108 % a
256 2.82593E+07 0.00062 113305832 % a
257 2.55740E+07 0.00066 102561694 % a
258 2.10438E+07 0.00088 84410408 % a
259 1.47406E+07 0.00128 59158328 % a
260 6.90961E+06 0.00173 27757305 % a
269 6.11824E+06 0.00180 24605297 % a
270 1.24799E+07 0.00146 50082556 % a
271 1.75043E+07 0.00115 70162972 % a
272 2.09412E+07 0.00091 83996186 % a
273 2.26524E+07 0.00078 90880071 % a
274 2.26523E+07 0.00080 90899066 % a
275 2.09812E+07 0.00091 84159359 % a
276 1.75488E+07 0.00112 70428849 % a
277 1.25562E+07 0.00148 50401978 % a
278 6.16699E+06 0.00186 24798123 % a
288 4.27265E+06 0.00207 17229209 % a
289 8.55405E+06 0.00169 34365897 % a
290 1.25135E+07 0.00147 50210762 % a
291 1.46490E+07 0.00129 58773077 % a
292 1.53427E+07 0.00122 61523230 % a
293 1.46500E+07 0.00130 58774583 % a
294 1.25170E+07 0.00152 50250777 % a
295 8.54741E+06 0.00175 34345671 % a
296 4.29968E+06 0.00213 17320892 % a
308 4.28823E+06 0.00205 17294821 % a
309 6.13191E+06 0.00189 24642359 % a
310 6.84044E+06 0.00171 27482475 % a
311 6.82470E+06 0.00175 27426910 % a
312 6.13938E+06 0.00187 24691816 % a
313 4.27758E+06 0.00213 17248606 % a
];
Attachments
input_core0.png
input_core0.png (220.11 KiB) Viewed 5630 times

User avatar
Jaakko Leppänen
Site Admin
Posts: 2387
Joined: Thu Mar 18, 2010 10:43 pm
Security question 2: 0
Location: Espoo, Finland
Contact:

Re: Full-core power distributions

Post by Jaakko Leppänen » Wed Mar 11, 2015 3:22 pm

The indexing should be the same as that in the lattice definition, starting with element 1 on the top left corner. Are you sure the lattice type is correct in your plot (x-type vs. y-type hexagonal)?
- Jaakko

novako
Posts: 26
Joined: Sun Feb 15, 2015 1:01 pm
Security question 1: No
Security question 2: 92
Location: Prague, Czech Republic

Re: Full-core power distributions

Post by novako » Wed Mar 25, 2015 7:55 pm

sorry, I had a mistake in my RUBY script.

vasudhaverma
Posts: 4
Joined: Tue Nov 12, 2013 4:16 pm
Security question 1: No
Security question 2: 92

Re: Full-core power distributions

Post by vasudhaverma » Wed Nov 16, 2016 1:52 pm

Hi,

I have a question. I used "set cpd 1 5 182 292" to get assembly wise power distribution. I understand that lvl0(:,2) gives the power.
What does lvl1 and lvl2 here, give? I am looking for power in axial zones as well.
lvl0 291x3
lvl1 63147x4
lvl2 314985x5

Thanks!
Vasudha

User avatar
Jaakko Leppänen
Site Admin
Posts: 2387
Joined: Thu Mar 18, 2010 10:43 pm
Security question 2: 0
Location: Espoo, Finland
Contact:

Re: Full-core power distributions

Post by Jaakko Leppänen » Wed Nov 16, 2016 2:48 pm

Level 0 is assembly-wise, no axial binning, level 1 is pin-wise, no axial binning and level 2 is pin-wise with axial binning.
- Jaakko

Post Reply